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Abstract

This paper explores the potential of leveraged Exchange Traded Funds (LETFs) for
long-term investors and lifecycle portfolios. Leverage can increase welfare by enabling
strategies that match the risk appetite of risk-tolerant investors, or by increasing financial
wealth exposure to compensate for the illiquidity of human capital. We find LETFs to
be suitable for both purposes with a caveat: risks associated to LETFs make it worth-
while typically only if the investor is sufficiently risk-tolerant. We also solve a dynamic
portfolio optimization problem taking leverage costs and limits into account. We find
that the optimal leverage target is fairly insensitive to typical leverage costs, and that
welfare gains of relaxing leverage constraints are sizeable for risk tolerant investors. In
our suitability analysis we study the risks of modelling discretely leveraged returns with
geometric Brownian motion, as well as the probability of LETFs crashing over horizons
of up to 40 years derived from extreme value theory and historical data.

1 Introduction

Leveraged instruments can increase welfare by enabling investment strategies that match the
risk appetite of risk-tolerant investors, or by increasing financial wealth exposure to compensate
for the illiquidity of human capital. On the downside, leverage magnifies losses and, depending
on the implementation, investors can even end up with negative balances. The goal of this
paper is to find an optimal policy that accounts for frictions in the form of leverage costs and
analyze the risks involved.

We explore the use of leveraged exchange traded funds (LETFs) in order to achieve the
benefits of leverage while avoiding potential pitfalls, in particular the risk of negative wealth.
In a traditional discrete-time investment setting with stocks and bonds, any investor who
wants to achieve more than 100% stock market exposure needs to finance this with a short
position in bonds or borrowing on margin, thus risking to end up with a negative balance in
case of adverse stock market returns. This is unfortunate since standard life-cycle models,
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based on continuous-time reasoning going back to e.g. Merton (1971), tend to recommend such
overleveraged positions especially to young investors.

Compared to trading on margin, LETFs offer considerable advantages for retail investors
including a partial solution to the overleverage dilemma. They relieve investors from the bur-
dens of margin maintenance and avoid the possibility of negative wealth thanks to limited
liability. Suppose an investor wants an exposure of 150% to the stock market. Instead of
investing in stocks 150% and “shorting bonds” −50% or borrowing on margin an equivalent
amount, investors can allocate 50% to a 1x ETF and 50% to a 2x LETF without the risk of
wealth ever turning negative. Investors are also spared from the frequent trading necessary to
maintain margins and their associated tax consequences, having more flexibility to decide when
to realize capital gains.

Our portfolio optimization problem is based on Merton (1971). In the renowned Merton
model, consumption and investment decisions can be solved separately and, under the mutual
fund separation theorem in the absence of hedging motives, the investment decision is simply the
fraction of wealth to invest in the risk-free asset and the tangent portfolio, which in equilibrium
is the market portfolio (Merton, 1973). The optimal investment fraction in the market portfolio
may involve leverage when investors are sufficiently risk tolerant or when the ratio of human
capital to financial wealth is sufficiently high. Returns and investment strategies are modelled
in continuous time, and those investment strategies need to be discretized when we apply
them to the real world. In general, discretely leveraged daily returns are well approximated by
continuously leveraged models. However whether Merton’s framework is well suited to model
daily leverage ultimately depends on how sensitive investors are to this approximation error,
hence we also analyze the adequacy of this model for different types of investors. In line with
conventional practice, we use the S&P 500 index as a proxy for the market portfolio because it is
a sensible compromise between broad exposure to the global economy, liquidity and availability
of financial instruments.

LETFs are financial products that aim to replicate a multiple of the underlying’s daily re-
turns, typically a factor 2 or 3, with daily compounding. As such, their returns can be well
approximated by continuously leveraged portfolios in Merton’s world. The accuracy of this
model for compounded returns over long horizons has remained an open question, and these
products have been typically relegated as instruments for short-term hedging or speculation
only. Concerns are mainly about beta slippage, which relates to differences between discrete
and continuously leveraged instruments, and volatility decay, which relates to differences be-
tween stochastic and deterministic processes. We believe that model errors are small in our case,
since these errors depend on the distribution of the underlying returns and we only consider a
relatively stable and well diversified underlying, which is a proxy for the market portfolio. To
address previously mentioned concerns, we analyze the suitability of LETF for mean-variance
and constant relative risk aversion investors over long-term horizons. This includes calculating
the probability that a LETF crashes over different time horizons, as well as comparing the mo-
ments of the continuously compounded leveraged returns to their discrete analogues. We argue
that beta slippage is mitigated by frequent compounding and that the apparent direct negative
impact of volatility on leveraged returns is not something inherently wrong with LETFs; the
same effect appears when leveraging in a Merton world and disappears when expected returns
are computed.

Usage of LETFs expands the set of admissible strategies for non-margin investors but carries
frictions comprising fees, tracking errors, as well as a leverage ceiling of typically 3 times the
underlying. Accordingly we find that the optimal investment strategy is a downward corrected
version of Merton’s investment fraction. Frictions are inevitable because of imperfections in
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real-world markets and the limited liability of LETFs is equivalent to embedding an option
component that must be paid one way or another. It is important to realize that LETFs are
not pure derivative contracts on daily returns. Rather they are composite financial instruments
that bundle existing derivative contracts in a limited liability product for the convenience of
the investor, and do so efficiently. They are engineered to replicate leveraged daily returns,
although they do so on a best effort basis without any explicit contractual guarantee. Yet it is
quite natural to assume that most investors cannot borrow money, shortsell the underlying or
manage margins more efficiently than LETFs do.

The decision to leverage along the capital market line can be justified on equilibrium capital
asset pricing models (CAPM) such as the seminal work of Sharpe (1964) and Lintner (1965).
Levy and Roll (2010) argue that “the market portfolio may be mean-variance efficient after
all”. Assuming that the market portfolio coincides with the tangent portfolio is not far fetched
either. On the one hand, Black (1972) argues that under borrowing constraints, investors with
an appetite for risk may depress the risk premium of high beta assets relative to those with low
beta, placing the market portfolio beyond the tangent portfolio. But on the other hand, the
existence of LETFs already shows that borrowing constraints are not so binding, and betting-
against-beta does not seem to yield excess returns (Hou, Xue, & Zhang, 2020; Novy-Marx &
Velikov, 2022). We assume that, despite leverage frictions, the optimal investment strategy lies
on the capital market line. Tracking errors for the most extreme LETFs on assorted indices
were on the order of 2% to 3% during the great recession (Avellaneda & Zhang, 2010). While
this seems sizeable compared to the expected return of the underlying, it is a much smaller
part of the leveraged expected returns, and a broad market index is arguably more stable than
sector indexes. Moreover, finding a non-leveraged portfolio that can reliably maintain a high
beta (e.g. 3) without introducing other types of non-rewarded risks seems a daunting task in
practice.

Next we proceed with a brief literature review in Section 2. In Section 3 we describe the
general model features and assumptions. In Section 4 we find the set of efficient portfolios with
minimum costs at each leverage ratio and in Section 5 we solve a dynamic portfolio optimization
problem. In Section 6 we evaluate the suitability of our LETF model for long term investors
and find that LETFs can be appropriate for sufficiently risk-tolerant long term investors.

2 Literature review

Merton (1971) is one of the most influential papers in dynamic portfolio optimization, finding
the optimal leverage and consumption strategies in closed form to maximize expected power
utility under geometric Brownian motion (GBM). Portfolio optimization under borrowing and
short-sales constraints was studied in Vila and Zariphopoulou (1997), Grossman and Vila (1992)
and Teplá (2000). Other papers in this literature introduce inflation when only nominal bonds
are available with stochastic interest rates (Brennan & Xia, 2002), or stochastic income (Hen-
derson, 2005). Our setting has many connections to Cuoco and Liu (2000), who study portfolio
optimization for investors trading on margin. Our contribution here consists in incorporating
leverage costs as incurred by investors trading LETFs.

Usage of GBM to model LETF prices is already documented in Giese (2010), which they
extend to capture borrowing and turnover costs. Avellaneda and Zhang (2010) derive discrete
and continuous time approximations for LETF returns that allow more general stochastic pro-
cesses for the price of the underlying, capturing fees and borrowing costs. They empirically
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validate their model for a wide variety of double and triple leveraged long and inverse LETF,
finding mean absolute approximation errors of less than 4% in the years 2008 and 2009 that
overlap with the a global financial crisis.

Regarding portfolio optimization with LETFs, Leung and Park (2017) find the optimal
leverage ratio to maximize the long term-growth rate for a power utility investor under GBM,
GARCH, CIR, Heston and other processes. Lundström and Peltomäki (2018) find the optimal
leverage ratio to maximize the Kelly criterion or log-utility. Staden, Forsyth, and Li (2024)
maximize the outperformance over standard investment benchmarks using LETFs. Guasoni and
Mayerhofer (2023) offer a comprehensive overview of how LETFs work from a fund manager’s
perspective and derive a dynamic strategy to balance accumulated tracking differences against
short-term tracking errors under proportional transaction costs. Dai, Kou, Soner, and Yang
(2023) offer a dynamic strategy to minimize tracking errors taking into account quadratic
transaction costs and nighttime market closure. Our additions to the portfolio optimization
literature from the perspective of retail LETF holders comprise: posing the problem in a
classical Merton framework with consumption, selection of LETFs according to an efficiency
criterion and measuring welfare effects. Moreover, our complementary analyses help us to
understand better how suitable the resulting investment policies are for different investors in
terms of risk preferences.

There is an intense debate about how suitable LETFs are for long-term horizons, partic-
ularly for buy-and-hold investors. Concerns regarding beta slippage and volatility decay of
LETFs have been studied by Avellaneda and Zhang (2010), Wagalath (2014), Guo and Leung
(2014) and Salimian, Winder, Manakyan, and Khazeh (2019). Leung and Santoli (2012) use
the VaR and CVaR within a GBM model to determine the admissible leverage ratio given a
time horizon or vice versa. Loviscek, Tang, and Xu (2014) and Bansal and Marshall (2015)
construct synthetic LETF returns based on historical data from the S&P 500 and other in-
dices. Then they compare “naive” expected returns to compounded daily leveraged returns
over different time horizons, where naive expected returns just multiply the underlying return
over the full period by the leverage factor. They find that daily leveraged returns quickly di-
verge from naive expectations as the time horizon increases, and that they tend to overperform.
While naive expectations are useful to understand how unsophisticated investors may perceive
LETF, those naive investment strategies are slightly contrived. By not readjusting leverage
ratios with respect to current portfolio wealth, naive strategies can use arbitrarily large daily
leverage and turn portfolio wealth negative. We perform an analysis of LETF risks that is more
appropriate for financially savvy investors by comparing how LETF returns differ from contin-
uously leveraged portfolios, and studying the implications for investors with different types of
risk preferences. We also address the concerns about beta slippage and, on top of it, we use
extreme value theory to calculate the probability of LETF crashes over long horizons.

3 Setting

We explore the usage of LETFs for long term investors under short-selling constraints. Let us
assume there are two reference financial indices: a constant risk-free interest rate r and a risky
stock index St driven by a geometric Brownian motion process depending on the instantaneous
expected market return µt and market volatility σt

dSt

St

=µt dt+ σt dWt .
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Investors are expected utility maximizers with constant relative risk aversion (CRRA). They
have a CRRA utility function with coefficient of relative risk aversion γ > 0. Informally, we
refer to investors with a small but positive γ as risk tolerant.

u(x) =

{
x1−γ

1−γ
if γ ̸= 1

log(x) otherwise
. (1)

There are also LETFs k = 1, . . . , K with price Lk,t, leverage factor βk ∈ R and leverage
costs fk ∈ R based on the risky stock index. The leverage factor of some instruments can
be negative, which are known as inverse LETFs. We assume that investors cannot short-sell
any financial instrument, or doing so is always less advantageous than maintaining nonnegative
positions on inverse LETFs, both in terms of costs and capacity to reach higher leverage ratios
than individually crafted leverage strategies. This is quite plausible if LETF managers achieve
economies of scale and implement better risk management strategies. Without loss of generality
we can treat investing in the risk-free asset and the stock index as special cases of LETFs with
leverage factors 0 and 1 and possibly some leverage costs. That is, investors may not buy the
stock index St directly, but instead they only have the possibility to buy a LETF with βk = 1
and leverage costs fk.

dLk,t =Lk,t ((rt + βk(µt − rt)− fk) dt+ βkσt dWt) (2)

The LETF price dynamics above are based on the continuous time models of Giese (2010)
and Avellaneda and Zhang (2010). In Avellaneda and Zhang (2010) there are two sources of
friction: fees and, for inverse ETFs, borrowing costs. Since LETF managers achieve negative
exposures by means of derivatives such as swaps and futures instead of taking short positions,
borrowing costs can be ignored in practice (Guasoni & Mayerhofer, 2023). Applying this model
makes the price of a LETF under constant volatility coincide with a βk leveraged portfolio in
a Merton world minus some constant leverage costs fk

Lk,t

Lk,0

=exp

(∫ t

0

rs ds+ βk

∫ t

0

µs − rs ds− β2
k

∫ t

0

σ2
s

2
ds− fkt+ βk

∫ t

0

σs dWs

)
. (3)

This setting is very similar to the renowned portfolio problem of Merton (1971) when market
parameters are constant, except for the short-selling constraints and availability of LETFs with
their associated leverage costs. In that problem, consumption and investment decisions can be
solved separately and, under the mutual fund separation theorem, the investment decision is
simply the fraction of wealth to invest in the risk-free asset and the tangent portfolio, which
is commonly assumed to be the market portfolio. When considering only financial wealth, the
optimal investment fraction to invest in the market portfolio µ−r

γσ2 is constant. Merton (1971) also
solves the portfolio optimization problem for lifecycle investors endowed with riskless human
capital Ht in addition to their initial financial wealth F0. The optimal investment fraction with
respect to their financial wealth Ft incorporates an additional multiplier

(µ− r)

γσ2

(Ft +Ht)

Ft

,

which, for typical young workers, implies leveraged positions since financial wealth Ft is rela-
tively small in comparison to human capital Ht at the beginning of their working lives.
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3.1 Data and parameters

We obtained historical S&P 500 returns from Center for Research in Security Prices (CRSP)
and historical US LETF expense ratios from Refinitiv. We see that available leverage ratios
vary from -3 to 3 and that expense ratios tend to be higher for more extreme leverage ratios.
Historical overnight USD LIBOR data was obtained from MacroMicro.me and the source of
SOFR data was the Federal Reserve Bank of New York. Following S&P Global guidelines
(Spurrier, 2021), the risk free rate coincides initially with overnight LIBOR and becomes SOFR
+ 0.02963% from 2021-12-20 onwards. Realized variance is estimated from simple index returns
during the previous 5 trading days1

σ̂2
t =

1

5

5∑
i=1

(Rm,t−i∆t)
2 .

Table 1 gives an overview of the US market for LETF instruments based on the S&P 500
index. It shows expense ratios from 2024 and historical difference statistics between 2019 and
2023 normalized by absolute leverage ratio, which makes them comparable in terms of risk
exposure units. It is reasonable to expect that if there is a base error to replicate a certain
index, then replicating a leveraged index will incur in an error that is at least a multiple of
the base error. Historical difference statistics compare yearly aggregated differences between
actual log returns and those implied by the continuous time model of Avellaneda and Zhang
(2010). Positive (negative) differences imply that LETFs returns are higher (lower) than the
theoretical continuous model. The columns Discrete leverage and Tracking break down those
differences between discrete leverage effects and tracking differences. Net tracking accounts for
tracking differences net of the expense ratio. Since expense ratios have been very stable over
time, Net tracking is roughly equivalent to subtracting the latest expense ratios from Tracking
differences.

1This differs slightly from Avellaneda and Zhang (2010). They use σ̂2
t = 1

5

∑5
i=1 (Rm,t−i∆t)

2 − R̄2
m,t with

R̄m,t =
1
5

∑5
i=1 Rm,t−i∆t, but that measure could have a downwards bias. Either we assume that the expected

return is zero and use the remaining degrees of freedom to estimate the variance, or we have to spend one degree
of freedom to estimate the mean and the rest to estimate the variance. Given the scarcity of observations (only
5 business days) and the fact that drift O(∆t) is negligible with respect to diffusion O(

√
∆t), the first choice is

preferred.
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Table 1: LETFs normalized characteristics and statistics, US market

Ticker Leverage Norm. expense ratio Normalized difference statistics
Model Disc. leverage Track. Net Track.

UPRO 3 0.0031 -0.0043 0.0039 -0.0083 -0.0052
SPXL 3 0.0030 -0.0036 0.0039 -0.0075 -0.0042
SSO 2 0.0046 -0.0057 0.0023 -0.0080 -0.0035
SPUU 2 0.0030 -0.0037 0.0023 -0.0061 -0.0029
SPY 1 0.0009 -0.0005 0.0000 -0.0005 0.0004
IVV 1 0.0003 -0.0000 0.0000 -0.0000 0.0003
VOO 1 0.0003 -0.0001 0.0000 -0.0001 0.0002
SPLG 1 0.0002 0.0003 0.0000 0.0003 0.0006
SH -1 0.0088 -0.0036 0.0058 -0.0094 -0.0005
SPDN -1 0.0058 0.0002 0.0058 -0.0056 -0.0005
SDS -2 0.0045 0.0037 0.0087 -0.0050 -0.0005
SPXS -3 0.0036 0.0074 0.0114 -0.0040 -0.0004
SPXU -3 0.0030 0.0078 0.0114 -0.0036 -0.0005

Expense ratio as of 2024-05-16. Statistics from 2020 to 2023.

Figure 1a shows the total return of LETFs with assorted leverage ratios over the last 15
years, and differences between actual and modelled log returns aggregated by product and
year. During these 15 years, the an investment of $1 in the 1x LETF has multiplied by 7.31,
the 2x LETF has multiplied by 21.4 and the 3x LETF has multiplied by 38.99. Normalized
model differences are distributed near the zero line, typically under 1%. Some years stand out:
2009 coincides with the end of a global financial crisis, and 2020 includes the stock market
crash due to the COVID-19 pandemic. In general higher absolute leverage ratios are associated
with positive model differences for negatively leveraged instruments and with negative model
differences for positively leveraged instruments.

Figure 1: Historical performance and model differences
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(b) Model differences

Figure 1a from 2008-11-05 to 2024-05-30. In Figure 1b each dot represents the cumulative
differences for a LETF ticker and year from 2007 to 2023.

Model differences can be attributed to either discrete leverage effects or tracking differences.
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Figure 2 shows that discrete leverage differences typically have a positive impact while tracking
differences have usually a negative one. Negative discrete leverage differences coincide with
periods of abrupt returns. The ending of the global financial crises had a negative impact across
all instruments and the 2020 crash during the COVID-19 pandemic had a marked negative effect
on 2x and 3x leveraged instruments. In terms of tracking differences, this pattern is not as
clear. However it is noticeable that some instruments, particularly 1x ETFs, show occasionally
positive tracking differences. Some possible explanations are that ETFs could be making extra
profits by lending component shares to short sellers, or that some ETFs had a systematic bias
towards some index components that were more profitable in this sample.

Figure 2: Model differences breakdown
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(a) Discrete leverage differences
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(b) Tracking differences

We would like to summarize relevant costs in a single metric: expense ratios plus net track-
ing losses. Figure 3 compares this metric to plain expense ratios. The relevance of expense
ratios and tracking differences is straightforward, however some investors could be concerned
with noise in tracking difference estimates, particularly when these estimates are positive. A
conservative way to address this point is to incorporate only the negative estimates, which we
refer to as net tracking losses. We use data from 2020 to 2023 to estimate net tracking differ-
ences to balance relevance and accuracy. Extending the time window brings more observations
making estimates more precise, but they may not incorporate improvements in replication tech-
nology and changes in tracking policies of different instruments (Dai et al., 2023; Guasoni &
Mayerhofer, 2023).

There are good reasons not to take into account the apparent positive impact of discrete
leverage. As we will see in Section 6.2, this effect is heavily influenced by extreme returns,
which may not be adequately represented in this sample. We find that the risk of larger losses
compensates these small but frequent gains.
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Figure 3: Leverage costs, US market
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Expense ratio as of 2024-05-16. Tracking difference statistics from 2019 to 2023.

In general we assume that investors can invest at the risk-free rate at zero cost, e.g. through
TreasuryDirect2. For this reason, we add an extra instrument with leverage ratio βk = 0
and zero cost fk = 0. Additionally, illustrations and numerical examples assume constant
parameters for the risk-free rate r = 0.03, instantaneous expected return µ = 0.1 and volatility
σ = 0.2 unless stated otherwise.

4 Efficient portfolios

An investor wants to find the portfolio with minimal leverage costs for each possible portfolio
leverage ratio m subject to short-selling constraints. By assumption LETF instruments differ
only in leverage ratio β and leverage costs f , while portfolios with identical leverage ratios and
leverage costs are treated as equivalent, regardless of the underlying weights π. The investor
has a universal distaste for portfolio leverage costs, such that, for any given target portfolio
leverage ratio m = π⊺β she strongly prefers the allocation π that minimizes portfolio costs π⊺f .

Despite its simplicity, this setting is broadly applicable to many portfolio optimization
models as we explain in Remark 1 at the end of this section. It is also straightforward to
apply in our model (3), since the dynamics of a portfolio π ∈ ∆K depend only on the convex
combination of leverage ratios m = π⊺β and leverage costs π⊺f .

Finding the minimal leverage cost f(m) for a given leverage ratiom, allows us to simplify the
upcoming portfolio optimization problem in Section 5. Those problems can then be formulated

2This may not be applicable to all investors, particularly to those outside the U.S., however adjusting this
fee to individual cases is straightforward.
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in terms of a leverage ratio scalar m instead of a vector of portfolio weights π, e.g.

max
π∈∆K

V (π⊺β, π⊺f) → max
m∈[βmin,βmax]

V (m, f(m))

where βmin and βmax denote the lowest and highest leverage ratios among available instruments.

Back to the problem at hand, an investor wants to achieve a target portfolio leverage ratio
m with minimum leverage costs subject to short-selling constraints. The market offers K
instruments based on the selected underlying with leverage costs f1, . . . , fK and leverage ratios
β1, . . . , βK .

min
π∈RK

K∑
k=1

πkfk

s.t.
K∑
k=1

πkβk = m

K∑
k=1

πk = 1 and π1, . . . , πK ≥ 0 (4)

The decision variable is an investment strategy π that captures the investment fraction
for each instrument. Short selling constraints π1, . . . , πK ≥ 0 prevent arbitrage and make
the optimal solution bounded. The risk-free asset and the non-leveraged stock index can be
considered special instances of LETFs.

Definition 1 (Efficiency).

• Efficient LETF portfolios are convex combinations of LETF instruments such that the
resulting portfolio leverage ratio cannot be replicated using a convex combination with
strictly lower leverage costs.

• Efficient LETF instruments are those that constitute an efficient LETF portfolio by them-
selves alone.

• Locally efficient LETFs instruments are those with the lowest leverage cost among instru-
ments with the same leverage ratio.

Note that efficient LETF portfolios are composed exclusively by efficient LETF instruments.
If that were not true, we could replace allocations to inefficient LETF instruments by efficient
LETF portfolios of equal leverage ratio and reduce overall portfolio costs.

Lemma 1. The set of efficient instruments is composed by

i) the locally efficient instrument with the lowest leverage ratio βmin

ii) the locally efficient instrument with the highest leverage ratio βmax

iii) locally efficient instruments with leverage ratio βk and leverage cost fk such that, with
respect to any two other locally efficient instruments l and h satisfying βl < βk < βh, it
holds that

fk ≤
βh − βk

βh − βl

fl +
βk − βl

βh − βl

fh, (5)
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and leverage costs of efficient instruments are convex on leverage ratios.

Proof. Proof in Section A.1.

At this point, the solution to the simple linear problem in (4) is just one step away.

Theorem 1. Minimum portfolio leverage costs as a function of portfolio leverage ratio are
convex, and efficient LETF portfolios can be replicated with a convex combination of the two
closest neighboring efficient LETFs. Let l and h denote the efficient instruments with leverage
ratios just below and above the leverage target m respectively, the optimal portfolio is

π⋆
l =

βh −m

βh − βl

π⋆
h =

m− β1

βh − βl

.

Proof. Proof in Section A.2.

Figure 4: Efficient leverage costs, US market
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Existing LETFs are represented as points. The lower convex hull is displayed as a solid line.

Efficient LETF portfolios lie in the lower contour of the convex hull and the minimum
feasible cost f is convex in the leverage ratio β. This relationship is illustrated graphically
in Figure 4. For the purposes of obtaining the efficient LETFs, the lower convex hull can be
computed using Andrew’s algorithm (Andrew, 1979) as described in Section A.3.

Corollary 1. The optimal cost f(m) as a function of the leverage ratio m is the piecewise
linear function below. Given a list of K efficient LETFs in the sense of Definition 1 sorted by
ascending leverage ratio,

f(m) =

{
fk if m = βk
(βk+1−m)fk+(m−βk)fk+1

βk+1−βk
if βk < m < βk+1

. (6)
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Proof. Straightforward application of Theorem 1.

For the remainder of the paper we restrict our attention to efficient LETFs using the notation
laid out in Corollary 1. It is clear that we can ignore inefficient LETFs without loss of generality
under our previous assumptions.

This result is broadly applicable to many portfolio optimization models, consider for instance
the case below.

Remark 1. Assume that the dynamics of the underlying risky asset and LETF’s prices Lk,t

follow a stochastic process with constant leverage costs fk

dLk,t =Lk,t ((rt + βk(µt − rt)− fk) dt+ βkσt dWt) ,

and the desired exposure to the risky factor is mt for the time horizon T . The dynamics of the
portfolio depend on the investment strategy πt subject to the constraint π⊺

t β = mt

dXt =Xt ((rt +mt(µt − rt)− π⊺
t f) dt+mtσt dWt) .

The investor can use Theorem 1 to maximize terminal wealth XT by minimizing the cost
difference π⊺

t f with respect to an ideal frictionless market

XT =X0 exp

(∫ T

0

(
rt +mt(µt − rt)−

(mtσt)
2

2

)
dt−

∫ T

0

π⊺
t f dt+

∫ T

0

mtσt dWt

)
. (7)

The optimum in (7) is achieved after replacing π⊺
t f by f(mt) from (6).

5 Portfolio optimization

We consider the dynamic portfolio problem with consumption and/or terminal wealth of an
expected utility maximizer in a market with continuous trading. There are no external inflows
of wealth and the investment plan is self-financing. At every instant, the investor must choose
a consumption rate ct ∈ [0,∞) and leverage ratio m ∈ [b1, bK ]. Leverage costs f(m) can be
in principle be described by any continuous piecewise once differentiable function with domain
endpoints and interior breakpoints b1, . . . , bK in ascending order. This includes but it is not
limited to the cost function defined in Corollary 1.

dXt

Xt

=(rt +mt(µt − rt)− f(mt)− ct) dt+mtσt dWt (8)

Market parameters rt := r(Yt), µt := µ(Yt, t), σt := σ(Yt, t) subject to σt > 0 are assumed to be
finite and functions of a state vector process Yt following a one-dimensional diffusion process

dYt =z(Yt) dt+ v(Yt) dWt + v̂(Yt) dŴt .

Investor’s wealth Xt follows the dynamics described in (8). The objective is to maximize
expected utility from consumption and terminal wealth, weighted respectively by ε1, ε2 ≥ 0
and subject to ε1 + ε2 > 0. Instantaneous and terminal utility are given by strictly continuous
concave functions u() and uT () with positive but diminishing marginal returns, discounted by
impatience rate δ.

J(Xt, Yt, t) = sup
mt,ct

Et

[
ε1

∫ T

t

e−δ(s−t)u (csXs) ds+ ε2e
−δ(T−t)uT (XT )

]
(9)
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Proposition 1. Suppose that indirect utility (9) is finite, once differentiable with respect to
time and twice differentiable with respect to wealth Xt and state Yt, and also that the cost
of leverage f(m) is continuous weakly convex piecewise and once differentiable. The optimal
implicit leverage ratio m⋆

t and consumption rate c⋆t need to satisfy

m⋆
t =



b1 if µt − rt ≤ a+1 .(
µt−rt− ∂f(m⋆)

∂m

)
σ2
t

∂J(Xt,t)
∂Xt(

− ∂2J(Xt,t)

∂X2
t

)
Xt

−
∂2J(Xt,Yt,t)

∂Xt∂Yt
vt

∂2J(Xt,Yt,t)

∂X2
t

Xtσt

if a+k < µt − rt < a−k+1

bk if a−k ≤ µt − rt ≤ a+k
bK if µt − rt ≥ a−K

(10)

c⋆t =(u′
t)

−1

(
ε−1
1

∂J(Xt, t)

∂Xt

)
X−1

t . (11)

where ∂− refers to the left partial derivative, ∂+ refers to the right partial derivative, bk denotes
a breakpoint or domain endpoint of f(m) and

a±k =
∂±f(m)

∂m

∣∣∣∣
m=bk

− bkσ
2
t

∂2J(Xt,Yt,t)

∂X2
t

Xt

∂J(Xt,Yt,t)
∂Xt

− σt

∂2J(Xt,Yt,t)
∂Xt∂Yt

vt
∂J(Xt,Yt,t)

∂Xt

.

Indirect utility J(Xt, Yt, t) should satisfy the partial differential equation (PDE) below, where
tr() is the trace of a matrix,

0 =ε1u (c
⋆
tXt) +

∂J(Xt, Yt, t)

∂t
− δJ(Xt, Yt, t)

+
∂J(Xt, Yt, t)

∂Xt

Xt (rt +m⋆
t (µt − rt)− f(m⋆

t )− c⋆t ) +
1

2

∂2J(Xt, Yt, t)

∂X2
t

X2
t m

⋆
t
2σ2

t

+
∂J(Xt, Yt, t)

∂Yt

zt +
1

2
tr

(
∂2J(Xt, Yt, t)

∂Y 2
t

(vtv
⊺
t + v̂tv̂

⊺
t )

)
+

∂2J(Xt, Yt, t)

∂Xt∂Yt

vtXtm
⋆
tσt

with boundary condition J(XT , YT , T ) = ε2uT (XT ).

Proof. See Section A.4.

An explicit solution arises in Theorem 2 when considering investors with CRRA utility and
constant market parameters r, µ, σ. The optimality of this classical solution can be established
on the basis of a verification theorem, e.g. Pham (2009, Theorems 3.5.2 and 3.5.3).

Theorem 2. For an expected CRRA utility maximizer individual under constant market pa-
rameters and a continuous weakly convex piecewise once differentiable cost of leverage f(m),
the optimal implicit leverage ratio m⋆

t and explicit consumption rate c⋆t are

m⋆
t =


b1 if mM ≤ a+1
mM − 1

γσ2

∂f(m⋆)
∂m

if a+k < mM < a−k+1

bk if a−k ≤ mM ≤ a+k
bK if mM ≥ a−K

with a±k = bk +
1

γσ2

∂±f(m)

∂m

∣∣∣∣
m=bk

(12)

c⋆t =ε
1
γ

1 h(Am⋆ , t)−1,

13



where mM = µ−r
γσ2 is the Merton fraction, ∂− refers to the left partial derivative, ∂+ refers to the

right partial derivative, bk denotes a breakpoint or domain endpoint of f(m), and

Am =
δ − (1− γ)ρm

γ
(13)

ρm =r +m(µ− r)− f(m)− 1

2
γm2σ2 (14)

h(A, t) =

ε
1
γ

1
(1−e−A(T−t))

A
+ ε

1
γ

2 e
−A(T−t) if A ̸= 0

ε
1
γ

1 (T − t) + ε
1
γ

2 otherwise
. (15)

It yields an indirect utility of

J(Xt, t) =

 ε1
Aγ

m⋆

X1−γ
t

1−γ
if T → ∞ and A > 0

h(Am⋆ , t)γ
X1−γ

t

1−γ
if T is finite

. (16)

Proof. See Section A.5.

Just as in Merton (1971), the optimal investment fraction (12) is constant, independent
from the consumption policy and applies to both dynamic and static settings. Corollary 2
specializes Proposition 1 to the efficient cost function from Corollary 1, making the optimal
investment fraction explicit in (17). Notice that leverage ratios β of efficient instruments are
the breakpoints b of the leverage cost function.

Corollary 2. For an expected CRRA utility maximizer individual under constant market pa-
rameters and the continuous, weakly convex and piecewise linear leverage cost function f(m)
defined in (6), the optimal explicit leverage ratio m⋆

t and consumption rate c⋆t are

m⋆
t =


β1 if mM ≤ a+1
mM − 1

γσ2

fk+1−fk
βk+1−βk

if a+k < mM < a−k+1

βk if a−k ≤ mM ≤ a+k
βK if a−K

with

a+k =βk +
1

γσ2

fk+1 − fk
βk+1 − βk

a−k =βk +
1

γσ2

fk − fk−1

βk − βk−1

(17)

c⋆t =ε
1
γ

1 h(Am⋆ , t)−1,

where mM = µ−r
γσ2 is the Merton fraction, βk denotes a breakpoint or domain endpoint of f(m),

h(A, t) is defined in (15),

Am =
δ − (1− γ)ρm

γ
and ρm = r +m(µ− r)− f(m)− 1

2
γm2σ2. (18)

Proof. Straightforward specialization of Proposition 1 to piecewise linear cost function (6).

Optimal leverage ratio and consumption rate from Corollary 2 are shown in Figure 5 for
various coefficients of risk aversion on an infinite horizon setting. For risk averse investors,
all models recommend a very similar policy as long as leverage is not necessary, and policy
differences appear only as risk aversion decreases. The optimal leverage ratio sits between the
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frictionless Merton fraction and the truncated Merton fraction without leverage. Differences in
leverage ratios are primarily due to binding leverage constraints corresponding to flat regions
on the graph, while vertical shifts in curves correspond to the secondary impact of leverage
costs. In terms of consumption rates, the optimal LETF investment plan appears to match
quite close that of the frictionless Merton model, as seen in Figure 5b.

Figure 5: Solution comparison, infinite horizon
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(b) Consumption rate

Using the optimal cost function f(m) from Corollary 1.

We can also approximate leverage costs with a quadratic function

f(m) =k0 + k1m+
1

2
k2m

2 where k2 ≥ 0. (19)

Quadratic leverage provides a tractable approximation satisfying the convexity required
by Lemma 1. The main purpose of (19) is to help us better understand its piecewise linear
analogue (6), since the role of convexity is no longer obscured by breakpoints. Figure 6 shows
a quadratic cost function fitted though ordinary least squares.
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Figure 6: Quadratic approximation to leverage costs

32-3 -1 1-2 0
0.000

0.005

0.010

0.015

0.020

0.025

Leverage ratio

Le
ve

ra
ge

 c
os

t
Expense ratio & (Net tracking diff.)
Expense ratio

Corollary 3. For an expected CRRA utility maximizer individual under constant market pa-
rameters and quadratic leverage costs (19), the optimal explicit leverage ratio m⋆

t and consump-
tion rate c⋆t are

m⋆
t =

µ− r − k1
γσ2 + k2

and c⋆t = ε
1
γ

1 h(Am⋆ , t)−1,

where h() is defined in (15),

Am⋆ =
δ − (1− γ)ρm⋆

γ
and ρm⋆ = r − k0 +

1

2

(µ− r − k1)
2

γσ2 + k2
. (20)

Proof. Straightforward specialization of Proposition 1 to quadratic cost function (19).

The optimal m⋆
t is a generalization of Merton’s fraction where linear costs k1 have an

effect comparable to reducing the risk premium and quadratic costs k2 an effect comparable to
increasing the risk aversion.

5.1 Welfare implications

We evaluate welfare losses associated to leverage costs, welfare gains of lifting a maximum
leverage constraint βmax and welfare gains from implementing sophisticated strategies that
take the cost of leverage into account. This answers questions like what are the welfare gains
of providing a 3x LETF technology to an investor who would otherwise be constrained to
m ∈ [0, 1], what is the marginal gain of further increasing this leverage threshold or if investors
can neglect leverage costs when selecting an investment strategy.

This analysis takes place in a static setting with no consumption and no impatience rate.
We define the certainty equivalent under investment strategy m by taking the inverse of the
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CRRA utility (1) inverse u−1(·) over the expected utility and discount it to present monetary
units at the risk free rate. To simplify notation we assume that there are no frictions acting
on the risk free rate, f(0) = 0, and we consider only constant investment fractions m. This is
enough for this welfare analysis since optimal investment policies are constant in our setting
and we only compare under optimality.

CE(m) =e−rT u−1 (E[u(XT (m))]) (21)

Next, we use (16) to replace the expected utility in (21) under the investment policy m and
leverage cost function f , arriving at the following expression

CEf (m) =X0e
(ρm,f−r)T with ρm,f = r +m(µ− r)− f(m)− 1

2
γσ2m2.

In this expression, ρm,f can be interpreted as the “perceived” investment growth rate by
the investor after adjusting for risk, and it extends our previous ρm by making the composition
with the leverage cost function f explicit. Changes in welfare are measured as the logarithm
of certainty equivalents, which can be interpreted as growth rates ρ when standardized by unit
of time. The growth rate interpretation highlights the cumulative impact that leverage costs
have.

log

(
CEfi(mi)

CEfj(mj)

)
1

T
=ρmi,fi − ρmj ,fj

Welfare losses associated to leverage costs. These correspond to the drop in certainty
equivalent wealth that investors suffer in comparison to a frictionless Merton world. In Merton’s
world, the optimal unrestricted investment strategy mM = µ−r

γσ2 yields a certainty equivalent of

CE∅(mM) =X0e
(ρmM,∅−r)T with ρmM ,∅ = r +

1

2

(µ− r)2

γσ2
,

where the symbol ∅ indicates that there is no cost function in this setting.

Blindly following Merton’s strategy in a world with leverage costs f(m) incurs in welfare
losses directly proportional to leverage costs

ρmM ,f − ρmM ,∅ = −f (mM) ,

and sophisticated investors mitigate the impact of these leverage costs by adjusting down the
leverage ratio tom⋆. By doing so, they introduce welfare losses due distortions in the investment
policy

ρm⋆,f − ρmM ,∅ = −f(m⋆)− 1

2
γσ2 (mM −m⋆)2 . (22)

Not surprisingly, carefully balancing leverage costs against policy distortions to minimize welfare
losses, produces the same solution as the investment problem in (A.1). With quadratic leverage
costs as in (19), welfare losses reduce to

ρm⋆,f − ρmM ,∅ = −
1
2
k2

(µ−r)2

γσ2 + k1(µ− r − k1
2
)

γσ2 + k2
.

As quadratic costs increase k2 → ∞ or linear costs grow within k1 ∈ [0, µ−r], individuals are
forced to choose m = 0. In this simplified setting, the marginal impact of linear and quadratic
costs on welfare are −m⋆ and −m⋆2 respectively.
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Welfare gains from lifting the leverage constraint. Lifting the maximum leverage con-
straint from βceil to β′

ceil yields gains of ρmin(m⋆,β′
ceil),f

− ρmin(m⋆,βceil),f . Figure 7a shows gains
increasing monotonically in risk tolerance with the leverage cost function from Corollary 1.
The marginal gains of increasing the leverage limit

lim
β′
ceil↓βceil

ρmin(m⋆,β′
ceil),f

− ρmin(m⋆,βceil),f

β′
ceil − βceil

=

(
µ− r − γσ2βceil −

∂+f(m)

∂m

∣∣∣∣
m=βceil

)
1βceil<m⋆

are non-negative due to the concavity of the investment problem in (A.1). Welfare gains of
lifting the maximum leverage constraint are higher when marginal leverage costs are lower,
when investors are more risk tolerant or when the leverage constraint was very restrictive.

Considering a quadratic cost function (19), welfare changes are

ρmin(m⋆,β′
ceil),f

− ρmin(m⋆,βceil),f =
1

2

(
max(0,m⋆ − βceil)

2 −max(0,m⋆ − β′
ceil)

2
)
(γσ2 + k2)

and the marginal impact of loosening the maximum leverage constraint becomes

lim
β′
ceil↓βceil

ρmin(m⋆,β′
ceil),f

− ρmin(m⋆,βceil),f

β′
ceil − βceil

= max(0, µ− r − k1 − βceil(γσ
2 + k2)).

Welfare gains from sophistication. On top of subtracting wealth from investors, leverage
costs can modify the investment strategy of rational investors. We refer to investors who take
into account the cost of leverage when optimizing their portfolio as sophisticated, and as naive
those who do not. These naive investors simply hold the a truncated Merton fraction in the
stock index.

As illustrated in Figure 7b, sophistication gains ρm⋆,f − ρmin(mM ,βmax),f are typically small
and concentrated on a narrow range of risk profiles. Very risk averse individuals want to invest
little in the risk asset, and assuming that the risk free asset has no fees, there is simply little
room to reduce any leverage cost at all. Highly risk tolerant individuals already find it optimal
to use maximum leverage even when taking associated costs into account. If leverage costs
were removed, these investors will continue to hit the same leverage constraint. Only those
investors who are sufficiently risk tolerant to use leverage, but do so in moderation, benefit
from sophistication.

Considering a quadratic cost function (19), gains from sophistication simplify to

ρm⋆,f − ρmin(mM ,βmax),f =
1

2
(γσ2 + k2)(min(mM , βmax)−m⋆)2.

Since the sophisticated and naive Merton strategies are so similar, we can typically ignore
the cost of leverage when deciding the optimal leverage ratio m⋆. This however does not mean
that leverage costs are insignificant. The savings from the minimal cost strategy of Section 4
have a one-to-one impact on investor’s welfare as shown in (22). The reason why they do not
appear here, is that we already took the optimal f(m) as given. This becomes more clear when
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we break down total welfare changes as

ρm⋆,f − ρmM ,∅ = ρm⋆,f − ρmin(mM ,βmax),f︸ ︷︷ ︸
Sophistication gains

+ ρmin(mM ,βmax),f − ρmin(mM ,βmax),∅︸ ︷︷ ︸
Direct naive costs, −f(min(mM ,βmax))

+ ρmin(mM ,βmax),∅ − ρmM ,∅︸ ︷︷ ︸
Naive leverage constraint, − 1

2
γσ2 max(0,mM−βmax)2

Figure 7: Welfare changes
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(b) Gains from sophistication

Using the optimal cost function f(m) from Corollary 1.

6 Suitability of LETFs for long term investment

When evaluating the appropriateness of LETFs for long term investors, we must take into
account both the risks explicitly captured in the model as well as the risks that we have ignored
or overlooked. The purpose of this section is to understand better these risks and find the type
of investors for whom this model is appropriate, particularly among mean-variance and CRRA
investors. More precisely, we analyze risks originating from modelling discrete returns using
a continuous model. Even though we focus on LETFs, most of these results extend naturally
to other investment strategies based on daily leverage. For instance, investors who trade on
margin to overleverage as in Cuoco and Liu (2000) are exposed to discrete returns overnight
and, contrary to LETFs, the lack of limited liability makes negative wealth a possibility in that
setting.

Section 6.1 addresses the concerns about beta slippage and volatility decay. In Section 6.2
we evaluate how close is the distribution of discretely leveraged daily returns to its continuously
leveraged analogue over long horizons. Our analysis covers risks inherent to discretely leveraging
daily returns that are not captured by the continuous leverage model. The most salient risk is
a LETF crash and we calculate the probability of such event over long horizons.
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6.1 Beta slippage and volatility decay

Beta slippage relates to differences between discrete and continuously leveraged instruments,
and it can be illustrated through a simple example. Suppose that the log-returns for a market
index are r1 and r2 during two consecutive years. Additionally, suppose that the index went up
during the first year, r1 > 0 but reverted to the original level after the second year r2 := −r1,
that is,

r1 + r2 = 0. (23)

Clearly, the wealth of an investor who held the market index during this period did not
change and she obtained a return factor of R = er1er2 = 1. But somewhat counterintuitively,
the wealth of an investor discretely leveraging simple returns may be eroded.

If an investor had applied a leverage ratio β > 1 to simple returns, she would have obtained
a return factor of

R =(1 + β(er1 − 1)) (1 + β(er2 − 1))

=1 + β(1− β)
(
(er1 − 1) + (e−r1 − 1)

)
.

The compounded simple leveraged return depends on the path taken by returns, “buying
high and selling low” along the way. Let us apply the well known inequality ex ≥ 1 + x, which
is strict for x ̸= 0. We can clearly see that paths with higher return deviations as well as higher
leverage ratios result in higher losses

R = 1 + β(1− β)︸ ︷︷ ︸
≤0

(
(er1 − 1) + (e−r1 − 1)

)︸ ︷︷ ︸
≥0

≤ 1.

If this investor had applied the leverage ratio β > 1 continuously in this deterministic
setting, she would have matched the overall market return regardless of the precise leverage
ratio or the actual path taken by the market index

R = lim
n→∞

(
1 + β(er1

1
n − 1)

)n (
1 + β(er2

1
n − 1)

)n
= eβr1eβr2 = 1

Continuous compounding in real-life may not be possible, but it approximates daily trading
n = 250 quite well. Avellaneda and Zhang (2010) show theoretically and empirically that a
continuous time approximation holds under some mild conditions in a more realistic setting
with stochastic returns and without the simplistic restriction (23). They show that daily
compounding mitigates the difference between discretely and continuously leveraged returns,
and the approximation error is of the order of the standard deviation of daily returns, which is
very small.

Applying Avellaneda and Zhang (2010) takes us directly to the concern of volatility decay,
which relates to differences between stochastic and deterministic processes. Restricting our
attention to GBM processes, this issue can be seen clearly in (3) when Lk,t is reformulated in
terms of the underlying price St.

Lk,t

Lk,0

=

(
St

S0

)βk

e−((βk−1)r+fk)te−βk(βk−1)σ
2

2
t (24)
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Compared to a deterministic world, the last term is driven by σ and indeed it has a negative
impact on leveraged returns (β /∈ [0, 1]), but this is not something inherently wrong with LETFs.
Rather, it is simply a consequence of leveraging in a Merton world and the term originates as a
byproduct of quadratic variation under Itô’s lemma. On a expected return basis and ignoring
leverage costs, the growth rate of LETF prices still scales linearly in the leverage ratio

E

[
Lk,t

Lk,0

]
= e(r+βk(µ−r)−fk)t.

An unfortunate limitation is that we cannot say much about volatility decay for general
stochastic processes. We will revisit the beta slippage and volatility decay topics again in
Section 6.2 under Lemma 2, when we compare the ratio of discrete and continuous return
factors.

6.2 Discrete leverage error and LETF crashes

In this section we want to quantify the error incurred in approximating discretely leveraged
daily returns, where the maximum operator captures limited liability,

Rd =max

(
0, er∆t + β

(
e

(
µ−σ2

2

)
∆t+σ

√
∆tZt − er∆t

))
(25)

using a continuous approximation (Avellaneda & Zhang, 2010; Giese, 2010) in a geometric
Brownian motion world

Rc =e

(
r+β(µ−r)−β2 σ2

2

)
∆t+βσ

√
∆tZt ,

as well as extending some parts of this analysis to historical returns wherever possible.

Table 2 shows that the mean and variance of discretely and continuously leveraged return
factors compounded over selected time horizons are almost identical. For a mean-variance
investor, the error of the continuous time approximation is almost negligible. Section A.6
contains the closed-form formulas needed for these computations.

Table 2: Measure ratios of discretely and continuously leveraged return factors

Leverage ratio
-3 -2 -1 1 2 3

Horizon

1 years E[Rd]/E[Rc] 0.9999 0.9999 1.0000 1.0000 1.0000 0.9999
SD[Rd]/SD[Rc] 1.0008 1.0007 1.0006 1.0000 0.9995 0.9989

5 years E[Rd]/E[Rc] 0.9994 0.9997 0.9999 1.0000 0.9999 0.9997
SD[Rd]/SD[Rc] 1.0011 1.0008 1.0005 1.0000 0.9993 0.9978

20 years E[Rd]/E[Rc] 0.9976 0.9988 0.9996 1.0000 0.9996 0.9988
SD[Rd]/SD[Rc] 1.0034 1.0012 1.0004 1.0000 0.9983 0.9925

40 years E[Rd]/E[Rc] 0.9953 0.9976 0.9992 1.0000 0.9992 0.9977
SD[Rd]/SD[Rc] 1.0068 1.0023 1.0003 1.0000 0.9967 0.9851

For a market with 250 trading days per year and risky asset driven by geometric Brownian
motion with risk-free rate r = 0.03, instantaneous expected return µ = 0.1 and volatility
σ = 0.2.
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We also analyze the accuracy of the continuous model on a state-by-state basis. We do so
through the discrete-continuous leverage ratio Rd/Rc, which tracks the direction and magnitude
of discrete leverage deviations from the continuous time approximation.

Lemma 2. The discrete-continuous leverage ratio Rd/Rc is quasi-concave (quasi-convex) on
the discounted underlying return factor

Ru = e

(
µ−r−σ2

2

)
∆t+σ

√
∆tZt

when β /∈ (0, 1) (β ∈ [0, 1]), attaining a global maximum (minimum) when the discounted
underlying return factor is 1. The relationship is strict when β /∈ {0, 1} on the region not

restricted by the max operator. Thus Rd/Rc is bounded above (below) by e(β
2−β)σ

2

2
∆t when

β /∈ (0, 1) (β ∈ [0, 1]). Additionally

lim
Ru↑∞

Rd

Rc

= lim
Ru↓0

Rd

Rc

=


0 if β /∈ [0, 1]

∞ if β ∈ (0, 1)

1 otherwise

Proof. See Section A.7

Lemma 2 implies that, for conventional LETFs with β /∈ (0, 1), discrete leverage errors
are positive when the magnitude of daily returns is relatively small compared to volatility and
negative otherwise. This is a manifestation of leverage slippage and volatility decay. Figure 8
illustrates how the discrete-continuous leverage ratio Rd/Rc depends on the underlying return3.
The GBM probability density and the frequency of historical empirical returns give us an idea
of how likely errors are. The negative skewness and high kurtosis of empirical returns are
evident as the horizontal axis coincides with the range of observed historical returns. We can
observe frequent instances of small but positive discrete leverage differences in agreement with
Figure 2a. Next we study how this effect is expected to compound over long-term horizons.

Figure 8: Discrete-continuous ratio and underlying return
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(a) Geometric Brownian motion
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(b) Empirical

In the geometric Brownian motion setting, we consider a trading day in a market with 250
trading days per year. The probability density corresponds to that of a matching geometric
Brownian motion process with risk-free rate r = 0.03, instantaneous expected return µ = 0.1
and volatility σ = 0.2. The empirical panel is based on S&P 500 historical daily returns since
1962-07-03 until 2023-12-29, with an average annualized volatility σ̂ = 0.1718.

3By using the non-discounted underlying return we purposely overlook the effect of the risk-free rate. At
short time intervals, the magnitude of drift O(∆t) is negligible in comparison to Wiener increments O(

√
∆t).
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Table 3 shows that on a state-by-state basis, discretely and continuously leveraged return
factors compounded over selected time horizons tend to be similar. Whenever they are equiva-
lent, the expectation of the Rd/Rc ratio should be close to 1 and the standard deviation close
to 0. Computations for positive leverage ratios show that the expectation is indeed very close
to 1 and the standard deviation is relatively small, with errors growing slowly in the time hori-
zon. Since the expected CRRA utility converges to the expectation as risk aversion γ → 0, we
believe that the model precision should be acceptable for risk-tolerant expected CRRA utility
maximizers. Section A.6 shows the formulas used for computing the moments of the Rd/Rc

ratio.

Table 3: Discrete-continuous leverage ratio expectation and standard deviation

Leverage ratio
-3 -2 -1 1 2 3

Horizon

1 years E[Rd/Rc] 0.9991 0.9997 1.0000 1.0000 1.0000 1.0000
SD[Rd/Rc] (0.0217) (0.0108) (0.0036) (0.0000) (0.0036) (0.0108)

5 years E[Rd/Rc] 0.9957 0.9986 0.9998 1.0000 1.0000 0.9998
SD[Rd/Rc] (0.0483) (0.0241) (0.0080) (0.0000) (0.0080) (0.0240)

20 years E[Rd/Rc] 0.9828 0.9946 0.9990 1.0000 1.0000 0.9994
SD[Rd/Rc] (0.0955) (0.0481) (0.0160) (0.0000) (0.0160) (0.0481)

40 years E[Rd/Rc] 0.9659 0.9892 0.9981 1.0000 1.0000 0.9988
SD[Rd/Rc] (0.1331) (0.0676) (0.0226) (0.0000) (0.0226) (0.0680)

For a market with 250 trading days per year and risky asset driven by geometric Brownian
motion with risk-free rate r = 0.03, instantaneous expected return µ = 0.1 and volatility
σ = 0.2.

After evaluating the general distribution of returns, we now focus on tail risks, particularly
on the risk of a LETF crash. Even if the underlying index is always positive, we know from
Lemma 2 that the price of a LETF can hit zero when the leverage ratio is outside the interval
[0, 1] and a daily return of the underlying is sufficiently extreme, e.g. −50% for 2x LETFs or
−33% for 3x LETS. Once the LETF price hits zero, it will never recover and this is a source
of concern for long term investors. Due to its absorbing nature, the most important question
for us is whether investors will experience such an event at least once over their investment
horizon, while the precise timing or count are less relevant.

The probability that a discretely leveraged instrument crashes or, more generally, yields
ever a return factor Rd lower than threshold x over a given investment horizon T is tightly
related to the extreme value distribution of the underlying index. In this setting, a threshold
of x = 0 corresponds to a crash event. Let gains of the reference stock index during day t be
r+S,t := log(St/St−∆t), losses be r

−
S,t := −r+S,t, the highest daily gain and loss over a time horizon

T be

M±
S,T := max

t∈{∆t,...,T}
± rS,t,

and the lowest daily discretely β leveraged return factor over a time horizon T be

Md,T := min
t∈{∆t,...,T}

Rd,t,
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with cumulative distribution functions Fr±S
, FM±

S,T
and FMd,T

. Using the definition of discretely

leveraged return factors from (25) and the extreme value M±
S,T , we obtain that the probability

of a discretely leveraged instrument yielding ever a return factor Rd,t below threshold x over
time horizon T is

FMd,T
(x) =



1− FM−
S,T

(
− log

(
x+(β−1)er∆t

β

))
if β > max(1− xe−r∆t, 0)

0 if β ∈ (0, 1− xe−r∆t]

1x≥er∆t if β = 0

1 if β ∈ [1− xe−r∆t, 0)

1− FM+
S,T

(
log
(

x+(β−1)er∆t

β

))
if β < min(1− xe−r∆t, 0)

where cumulative distribution functions of extreme values, if daily returns are assumed to be

independent, simplify to FM±
S,T

(x) = Fr±S
(x)

T
∆t .

Table 4 shows the probability of a LETF yielding ever a return factor below a given threshold
or crashing (threshold 0) assuming a conventional geometric Brownian motion process. In this
setting, the risk of a LETF crash is negligible and the explicit probability formula can be found
in (A.8) under Section A.6.

Table 4: Discretely leveraged daily return factor, probability of falling at least
once below threshold

Leverage ratio
-3 -2 -1 1 2 3

Horizon Thres.

10 years 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.8 0.0005 0.0000 0.0000 0.0000 0.0000 0.0001
0.85 0.1404 0.0000 0.0000 0.0000 0.0000 0.0562
0.87 0.6485 0.0009 0.0000 0.0000 0.0001 0.4159

40 years 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.8 0.0018 0.0000 0.0000 0.0000 0.0000 0.0002
0.85 0.4541 0.0001 0.0000 0.0000 0.0000 0.2065
0.87 0.9847 0.0034 0.0000 0.0000 0.0005 0.8836

For a market with 250 trading days per year and risky asset driven by geometric Brownian
motion with risk-free rate r = 0.03, instantaneous expected return µ = 0.1 and volatility
σ = 0.2.

Robust probability estimates of a LETF crash or return factor falling below a threshold,
can be obtained applying Extreme Value Theory (EVT). A great reference in this domain is
De Haan and Ferreira (2006) and we use it to analyze S&P 500 historical daily log-returns since
1962-07-03 until 2023-12-29. We estimate Pareto distributions to the tail of highest daily gains
r+S,t and losses r−S,t. It is well known that the empirical distribution of stock log-returns shows
slightly fat tails and, using Hill’s estimator, we obtain a shape parameter γ̂− = 0.3342 for the
losses and γ̂+ = 0.3127 for the gains. Assuming that tails are regularly varying, the estimated
Pareto distributions allow us to evaluate the upper tails of Fr±S

and the associated extreme
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quantile. The maximum value distribution over the T/∆t time periods belongs to the Fréchet
domain of attraction and it is approximated using De Haan and Ferreira (2006, Corollary 1.2.4)
as

FM±
S,T

(x) ≈ exp

−

(
x

F−1

r±S
(1−∆t/T )

)−1/γ̂±
.

Classical EVT tools were developed for independent and identically distributed (i.i.d.) sam-
ples, however later extensions are more flexible. Removing the independence assumption can
even strengthen this analysis; for stationary sequences under mild mixing conditions, the uni-
variate normalized maximum distribution Gθ(x) converges to that of its independent analogue
G(x) up to the extremal index θ ∈ (0, 1], which captures the degree of independence (Leadbet-
ter, Lindgren, & Rootzén, 1983). Intuitively, dependence has an effect equivalent to reducing
the effective sample size making the independent analogue an upper bound. For applications to
log-returns from discrete stochastic volatility models see Andersen, Davis, Kreiß, and Mikosch
(2009).

Using EVT in Table 5, we can see that over an horizon of 40 years the probability of 2x
or 3x LETFs crashing is low but not negligible, while for -3x LETFs the risk is significant. In
comparison to Table 4, risk increases across the board and the probability of encountering a
return factor of 0.5 (50% loss) becomes sizeable.

Table 5: Extreme Value Theory probability of discretely leveraged daily return
factor falling at least once below threshold

Leverage ratio
-3 -2 -1 1 2 3

Horizon Thres.

10 years 0 0.0236 0.0085 0.0017 0.0000 0.0017 0.0085
0.5 0.1430 0.0498 0.0085 0.0017 0.0237 0.0895
0.8 0.8749 0.4772 0.0891 0.0499 0.3836 0.8210
0.85 0.9917 0.7720 0.1866 0.1237 0.6964 0.9847
0.87 0.9993 0.8929 0.2652 0.1891 0.8442 0.9985

40 years 0 0.0912 0.0337 0.0069 0.0000 0.0069 0.0337
0.5 0.4605 0.1847 0.0337 0.0069 0.0913 0.3128
0.8 0.9998 0.9253 0.3116 0.1851 0.8557 0.9990
0.85 1.0000 0.9973 0.5622 0.4104 0.9915 1.0000
0.87 1.0000 0.9999 0.7085 0.5677 0.9994 1.0000

For a market with 250 trading days per year and risk-free rate r = 0.03.

The possibility of a LETF crash does not necessarily rule out risk averse CRRA investors
with γ ≥ 1. At first sight, one could think the opposite since CRRA utility is defined exclusively
for positive payoffs when γ ≥ 1. If investors with γ ≥ 1 can invest their entire wealth on a
LETF, the risk of a LETF crash would be unfathomable and would make the continuous model
inappropriate for them. Applying the continuous model to individuals with γ ≥ 1 implicitly
assumes that wealth dropping to zero is for all intents and purposes equivalent to an arbitrarily
low but non-zero level of wealth. This argument invites us to reflect on why we use CRRA
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utility. CRRA utility is a tractable function that captures some stylized features commonly
associated to human preferences such as diminishing marginal utility and constant relative risk
aversion. However other properties may originate from mathematical artifacts unrelated to the
real-world, such as the incommensurable difference between an empty wallet and having a cent
when γ ≥ 1. If investors can bear arbitrarily low levels of positive wealth but the possibility
of zero wealth is utterly unacceptable, they can deposit one cent in a separate bank account
and self-insure themselves for an almost negligible cost. To be clear, the analysis above still
implies that there is a risk aversion threshold where the continuous LETF model ceases to be
appropriate. The point is that this threshold does not have to be determined by some arbitrary
mathematical artifacts related to CRRA utility.

To better illustrate this point, Table 6 compares numerically how well off are investors that
use discretely leveraged instruments and safely put aside a small fraction, in comparison to
those using continuously leveraged instruments. Consider an investor who is currently holding
$1 in a continuously leveraged instrument of a given leverage ratio. We calculate the premium
π required to make the individual hold instead $1 in a discretely leveraged instrument of the
same leverage ratio. Including the premium, the expected utility of both portfolios over a single
trading day is the same, but the discretely leveraged one is 1 + π times more expensive. After
using homogeneity to normalize by initial wealth, the ratio of discrete to continuous certainty
equivalents becomes CEd/CEc = (1 + π)−

1
∆t .

Table 6: Ratio of discrete to continuous certainty equivalents

Leverage ratio
-3 -2 -1 1 2 3

Risk aversion

0.10 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
0.50 0.9995 0.9998 1.0000 1.0000 1.0000 1.0000
1.00 0.9989 0.9997 0.9999 1.0000 1.0000 0.9999
5.00 0.9880 0.9970 0.9997 1.0000 0.9995 0.9963
10.00 0.9590 0.9903 0.9990 1.0000 0.9978 0.9841
20.00 0.8550 0.9653 0.9968 1.0000 0.9905 0.9353

For a market with 250 trading days where the risky asset is driven by geometric Brownian
motion with risk-free rate r = 0.03, instantaneous expected return µ = 0.1 and volatility
σ = 0.2. Expectations were calculated numerically using Gauss-Kronrod adaptive quadrature
and the premium was found using bisection.

We can also think about other ways to design a discrete time instrument that approximates
Rc in a more reliable way and free from crash risk. Instead of leveraging simple daily returns,
this alternative instrument could instead leverage log-returns as in the following equation

Rl =exp

(
β log

(
S∆t

S0

)
− (β − 1)

∫ t

0

rs ds− β(β − 1)

∫ t

0

σ2
s

2
ds

)
.

The last term inside the exponential function makes sure that the instrument is arbitrage-free
and coincides with (3) if leverage costs are excluded. Such an instrument would be much more
appropriate for risk-averse investors as discretization crash risk is eliminated.

This thought exercise does not consider the difficulties and risks that fund managers could
find when engineering such products. In comparison to a traditional LETF, log-leveraged
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instruments need an estimate of the daily realized variance σ2
0,t, which on the one hand is

less susceptible to manipulation than closing price but on the other hand it is not observable
overnight. Replication using existing derivatives is also harder for log-leveraged ETFs. Daily
payoffs of traditional LETF can closely match those of common futures or swaps after adjusting
the exposure at the beginning of the day. But there are no widespread log-leveraged derivatives.
Log-leveraged ETFs seem also harder to launch as derivative contracts on their own. Traditional
LETFs enjoy the property that, ignoring limited liability, daily cashflows for a product with
leverage ratio β are offset by those of its inversely leveraged twin −β at equal investment
values, that is, Rd,−β − er∆t = −

(
Rd,β − er∆t

)
. However this relationship does not hold for

log-leveraged ETFs and it is unclear who would be interested in taking the other side of the
contract. Participants on the other side would maintain a constant instantaneous leverage
ratio, increasing (decreasing) the notional amount when the market moves against them (in
their favor).

7 Discussion

Overall, the continuous time model seems to hold reasonably even if returns are discretely
leveraged. Ideally, investors would prefer LETFs that apply the leverage multiplier to daily
logarithmic returns instead of simple returns. The fact that those instruments are not available
in financial markets, makes leverage worthwhile only to mean-variance investors or to risk-
tolerant CRRA utility maximizers. This is not an impediment in practice, since typically
risk-tolerant investors are the only ones interested in overleverage, while risk-averse investors
would not be interested even if frictions were removed.

An intricate case is that of moderately risk-averse investors with overleverage motives stem-
ming from their human capital illiquidity. On the one hand, overleverage risks are concentrated
in the first few years of their careers when their financial wealth comprises a very small fraction
of their total wealth. A LETF crash would not imply that their entire wealth dissapears: the
crash only affects the fraction of financial wealth that was invested in LETFs, but not their
human capital. They can still use their labor wages to sustain immediate consumption and
build up financial wealth anew. On the other hand, the risk of unlikely but large beta slippage
or even a LETF crash is a concern of sizable disutility for moderately risk averse investors
that is not captured in the continuous model as shown in Table 6. These investors will find
it optimal to moderate the use of leverage, although the precise adjustment would need to be
determined numerically.

The decision to use LETFs as a long-term investment may be rational from an individual
point of view, but consequences on a macroeconomic level are more complicated. Mankiw and
Zeldes (1991) show that stockholders’ consumption is more volatile and correlated to stock
market movements than that of non-stockholders. LETFs make it easier for investors to reach
higher leverage ratios with the caveat that extreme discretely leveraged returns carry some
adverse non-linear effects in comparison to continuously leverage models. A sufficiently negative
daily return (close to) triggering a LETF crash, could theoretically exacerbate systemic risk
through an additional drop in consumption. On the positive side, LETFs also bring sizable
welfare gains to risk tolerant investors as shown in Section 5.1. One could also argue, in
light of the stock market participation puzzle (Campbell, 2006; Haliassos & Bertaut, 1995),
that restricting access to LETFs may be counterproductive as households do not get enough
exposure to stocks in the first place.
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8 Conclusion

We argue that leveraged market exposure over long horizons can be easily achieved with LETFs
and we include these instruments in a continuous time portfolio optimization model based
on Merton (1971). This model shows that welfare gains from lifting the leverage constraint
are sizable for risk-tolerant investors. The continuous specification seems to hold well when
considering the challenges of leveraging in a discrete time world, and it seems suitable for long-
term investors that are sufficient risk-tolerant. Yet this limitation is typically inconsequential:
it is mostly risk-tolerant investors who are interested in overleverage. Lifecyle models could
also incorporate LETFs to compensate for the illiquidity of human capital, although risk-averse
investors would reduce their leverage ratios in comparison to continuous model predictions, as
discrete leverage risks are more unpalable to them.

A Appendix

A.1 Proof of efficient LETFs set, Lemma 1

For the purposes of building a set, we can safely restrict our analysis to unique leverage ratio
βk and costs fk combinations. Among instruments with the same leverage ratio it is obvious
that the one with lowest leverage costs can replace the rest while reducing portfolio costs, so
we only need to consider locally efficient instruments.

Showing i) and ii) is straightforward. Replicating their extreme leverage ratios is only
possible using an instrument with the same leverage ratio, since assigning a positive weight
to a less extreme instrument would also require assigning a positive weight to a more extreme
instrument that does not exist.

For statement iii), we can visualize the problem geometrically in the R2 plane considering all
possible combinations of locally efficient instruments {(β1, f1), . . . , (βK , fK)}. Efficient LETF
portfolios correspond to the lower contour of the convex hull, since for any leverage ratio
m spanned by the convex hull, they represent the minimum achievable cost. These efficient
LETF portfolios are the geometric edges of the lower contour of the convex hull and can be
replicated as the combination of the two nearest left and right vertices along the leverage ratio
axis. Efficient LETF instruments correspond to locally efficient instruments sitting in the lower
contour of the convex hull and geometrically they are the vertices thereof. Thus each efficient
LETF instrument k with (βk, fk) satisfies the equation below with respect to any replicating
convex combination of instruments l and h where βl < βk < βh

fk ≤
(βh − βk)fl + (βk − βl)fh

βh − βl

.

In turn, this relationship implies that leverage costs of efficient instruments are convex on
leverage ratios.

Alternatively, we can provide a more extensive explanation for statement iii). First we need
to prove that efficient portfolios can be replicated with at most two instruments. By virtue
of linearity, any portfolio π with a given leverage ratio m can be disaggregated into a convex
combination of several at-most-two-instruments-portfolios each with average leverage ratio m.
This decomposition can proceed iteratively as follows.
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1) Create an at-most-two-instruments-portfolio with leverage ratio m using the instruments
of portfolio π with the lowest l and highest h leverage ratios. The weights are non-negative
and uniquely determined by wl =

βh−m
βh−βl

and wh = m−βl

βh−βl
.

2) Create a new remainder portfolio π′ from π by setting π′
l = 0 and π′

h = πh − πl
wh

wl
if

wh

wl
≤ πh

πl
, or π′

l = πh
wl

wh
and π′

h = 0 otherwise. Then renormalize weights.

3) Repeat step 1) for portfolio π′ if composed by more than two instruments.

Efficient portfolios can be replicated with at most two instruments since the leverage cost of
any portfolio is bounded below by the component with the lowest leverage cost among its
at-most-two-instruments-portfolios, which constitutes itself a valid portfolio.

Now we need to derive the condition that characterizes efficient instruments. Let k be an
instrument with leverage ratio βk and cost fk. To be efficient, it needs to have a cost lower
or equal than any at-most-two-instruments-portfolio with portfolio leverage ratio equal to βk.
Previously we restricted our attention to instruments with the lowest cost among those with
equal leverage ratios, therefore we only need to compare against portfolios composed of two
instruments. If one instrument has a leverage ratio strictly lower than βk, the other must have
a strictly higher leverage ratio and vice-versa, otherwise it will not be able to match βk and
satisfy the simplex constraint. Let instruments l and h be such that βl < βk < βh, then the
leverage ratio of instrument k can only be replicated using the convex combination of weights
wl =

βh−βk

βh−βl
and wh = βk−βl

βh−βl
. Portfolio costs are then given by the weighted sum of instrument

leverage costs, and instrument k is efficient only if

fk ≤
(βh − βk)fl + (βk − βl)fh

βh − βl

.

At this point it has become apparent that leverage costs of efficient instruments are convex
on the leverage ratio. Parametrizing any instrument (βk, fk) in terms of the convex combination
λ ∈ [0, 1] of instruments l and h such that βl < βh, it immediately follows that

fk ≤ λfl + (1− λ)fh.

A.2 Proof of minimum cost portfolio, Theorem 1

Problem (4) can be visualized geometrically in the R2 plane as finding the lowest feasible point
(m, f̄) along the vertical linem. The feasible region is the intersection of the vertical linem with
the convex hull spanned by all possible convex combinations of points {(β1, f1), . . . , (βK , fK)}.
That is, the feasible region is a segment on the vertical line m whose extremes touch the
upper and lower contour of the convex hull, and the solution coincides with lower extreme. By
Lemma 1 we know that vertices of the convex hull correspond to efficient LETF instruments
and edges are the convex combination of two vertices, so the solution can be achieved with
a combination of the two closest left and right efficient LETF instruments along the leverage
ratio axis.

Alternatively, we can provide a more extensive explanation. Note that efficient LETF
portfolios are composed exclusively by efficient LETF instruments. If that were not true, we
could replace allocations to inefficient LETF instruments by efficient LETF portfolios of equal
leverage ratio and reduce overall portfolio costs.
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We can use Lemma 1 to show that a candidate solution π investing fractions π1, π2, π3 in
at least three efficient instruments such that (5) holds and β1 < β2 < β3 where β1, β3 are
extremes within the trio, can be replicated or improved removing a non-neighboring extreme.
The convex combination of any three instruments belonging to π forms a subportfolio with a

leverage ratio of m0 =
∑3

k=1 πkβk∑3
k=1 πk

.

If β1 ≤ m0 ≤ β2, the convex combination of instruments that achieves the lowest leverage
costs does not need instrument 3.

min
w

f1w1 + f2w2 + f3w3

s.t.
3∑

j=1

wjβj = m0

3∑
j=1

wj = 1 and w1, w2, w3 ≥ 0

substituting w1 and w2 using the constraints yields

min
w3

f1 + (f2 − f1)
m0 − β1

β2 − β1

+ w3

(
f3 − f1
β3 − β1

− f2 − f1
β2 − β1

)
(β3 − β1)

s.t. 0 ≤ w3 ≤
m0 − β1

β3 − β1

where w3 = 0 is optimal since applying (5) to instrument 2 implies that

f2 − f1
β2 − β1

≤ f3 − f1
β3 − β1

.

If β2 ≤ m0 ≤ β3, the convex combination of instruments that achieves the lowest leverage
costs does not need instrument 1.

min
w

f1w1 + f2w2 + f3w3

s.t.
3∑

j=1

wjβj = m0

3∑
j=1

wj = 1 and w1, w2, w3 ≥ 0

substituting w2 and w3 using the constraints yields
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min
w

f3 −
β3 −m0

β3 − β2

(f3 − f2) + w1

(
f3 − f2
β3 − β2

− f3 − f1
β3 − β1

)
(β3 − β1)

s.t. 0 ≤ w1 ≤
β3 −m0

β3 − β1

where w1 = 0 is optimal since applying (5) to instrument 2 implies that

f3 − f1
β3 − β1

≤ f3 − f2
β3 − β2

.

Thus, we can use induction to remove one of the non-neighboring extreme instruments until
the portfolio is composed only by the two closest neighboring instruments. Denote with l and
h the efficient instruments just below and just above respectively, the convex combination that
matches m is

w⋆
1 =

β2 −m

β2 − β1

w⋆
2 =

m− β1

β2 − β1

.

All together, this implies that the function f(m) describing minimum leverage costs in terms
of leverage ratiom ∈ [βmin, βmax] is continuous and coincides with a linear interpolation between
neighboring efficient instruments. To prove that this function is convex, it is sufficient to show
that the slope of this linear interpolation is non-decreasing. Consider any three consecutive
efficient instruments such that β1 < β2 < β3, by Lemma 1 we immediately see that indeed the
slope is non-decreasing

f2 − f1
β2 − β1

≤ f3 − f2
β3 − β2

.

A.3 Lower convex hull algorithm

Algorithm 1 Lower convex hull of LETFs using Andrew’s algorithm

Create the list of unique points P = [(β1, f1), . . . , (βK , fK)] sorted in ascending leverage order,
where each point matches a leverage ratio βk to the lowest possible leverage cost fk available
for that leverage ratio.
Denote with S the list of provisional non-dominated points and add (β1, f1) to it
Use (βend, fend) to denote the last element of S and (βend−1, fend−1) for the second-to-last
element if it exists.

for (βk, fk) in P2:K do

while size(S) ≥ 2 and fend−fend−1

βend−βend−1
≥ fk−fend

βk−βend
do

Pop (βend, fend) from S
end while
Push (βk, fk) to S

end for

Output: S
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A.4 Proof of portfolio optimization, Proposition 1

Applying the Bellman principle of optimality can transform indirect utility J() into a recursive
function over a small time step ∆t

J(Xt, Yt, t) = sup
mt,ct

ε1e
−δ∆tu (ctXt)∆t+ e−δ∆tEt [J(Xt+∆t, Yt+∆t, t+∆t)] .

The Hamilton-Jacobi-Bellman (HJB) equation is obtained multiplying both sides by eδ∆t,
subtracting J(Xt, Yt, t), dividing by ∆t and taking lim∆t↓0.

δJ(Xt, Yt, t) = sup
mt,ct

ε1u (ctXt) +
∂J(Xt, Yt, t)

∂t
+

∂J(Xt, Yt, t)

∂Xt

Xt (rt +mt(µt − rt)− f(mt)− ct)

+
1

2

∂2J(Xt, Yt, t)

∂X2
t

X2
t m

2
tσ

2
t +

∂J(Xt, Yt, t)

∂Yt

zt +
1

2
tr

(
∂2J(Xt, Yt, t)

∂Y 2
t

(vtv
⊺
t + v̂tv̂

⊺
t )

)
+

∂2J(Xt, Yt, t)

∂Xt∂Yt

vtXtmtσt

Notice that, in the HJB expression above, we used Itô’s lemma to resolve

lim
∆t↓0

Et [J(Xt+∆t, Yt+∆t, t+∆t)]− J(Xt, Yt, t)

∆t

=
∂J(Xt, Yt, t)

∂t
+

∂J(Xt, Yt, t)

∂Xt

∂Xt

∂t
+

1

2

∂2J(Xt, Yt, t)

∂X2
t

(
∂Xt

∂Wt

)2

+
∂J(Xt, Yt, t)

∂Yt

∂Yt

∂t

+
1

2
tr

(
∂2J(Xt, Yt, t)

∂Y 2
t

(
∂Yt

∂Wt

∂Yt

∂Wt

⊺

+
∂Yt

∂Ŵt

∂Yt

∂Ŵt

⊺))
+

∂2J(Xt, Yt, t)

∂Xt∂Yt

∂Yt

∂Wt

∂Xt

∂Wt

⊺

.

The consumption and investment problems can be solved separately. The investment prob-
lem is

sup
mt

∂J(Xt, Yt, t)

∂Xt

Xt (mt(µt − rt)− f(mt)) +
1

2

∂2J(Xt, Yt, t)

∂X2
t

X2
t m

2
tσ

2
t

+
∂2J(Xt, Yt, t)

∂Xt∂Yt

vtXtmtσt

(A.1)

and second order conditions should be satisfied by concavity since f(mt) is assumed to be convex

and ∂2J(Xt,Yt,t)

∂X2
t

to be negative4. Assuming that f(m) is piecewise differentiable, the solution

is implicitly given by the first order condition (FOC) taking into account the possibility that

the inflection point happens at a domain breakpoint. Let ∂−f(m)
∂m

= limh↑0
f(m+h)−f(m)

h
denote

the left and ∂+f(m)
∂m

= limh↓0
f(m+h)−f(m)

h
the right hand side limits of marginal leverage cost, all

4Ultimately this follows from diminishing marginal utility of u().

32



optimal points m must satisfy either

0 =
∂J(Xt, Yt, t)

∂Xt

Xt

(
µt − rt −

∂−f(m)

∂m

)
+

∂2J(Xt, Yt, t)

∂X2
t

X2
t mtσ

2
t

+
∂2J(Xt, Yt, t)

∂Xt∂Yt

vtXtσt

(A.2)

or 0 =
∂J(Xt, Yt, t)

∂Xt

Xt

(
µt − rt −

∂+f(m)

∂m

)
+

∂2J(Xt, Yt, t)

∂X2
t

X2
t mtσ

2
t

+
∂2J(Xt, Yt, t)

∂Xt∂Yt

vtXtσt

(A.3)

or
∂−f(m)

∂m
< µt − rt +

mtσ
2
t
∂2J(Xt,Yt,t)

∂X2
t

Xt +
∂2J(Xt,Yt,t)

∂Xt∂Yt
vtσt

∂J(Xt,Yt,t)
∂Xt

<
∂+f(m)

∂m
. (A.4)

The critical points of the objective function correspond to: the left derivative being zero (A.2),
the right derivative being zero (A.3), or the left derivative being positive while the right deriva-
tive is negative (A.4).

If both sided limits for ∂f(m⋆)
∂m

coincide and m is within its differentiable region boundaries,
we obtain an interior solution from (A.2) and (A.3)

m⋆
t =

(
µt − rt − ∂f(m⋆)

∂m

)
σ2
t

∂J(Xt,Yt,t)
∂Xt(

−∂2J(Xt,Yt,t)

∂X2
t

)
Xt

−
∂2J(Xt,Yt,t)

∂Xt∂Yt
vt

∂2J(Xt,Yt,t)

∂X2
t

Xtσt

that, for the closest breakpoints or domain endpoints bk below and bk+1 above relative to m⋆,
satisfies the following inequalities

a+k < µt − rt < a−k+1

where

a±k =
∂±f(m)

∂m

∣∣∣∣
m=bk

− bkσ
2
t

∂2J(Xt,Yt,t)

∂X2
t

Xt

∂J(Xt,Yt,t)
∂Xt

− σt

∂2J(Xt,Yt,t)
∂Xt∂Yt

vt
∂J(Xt,Yt,t)

∂Xt

.

Then we evaluate the first condition at the endpoints of the domain, taking into account
that only one sided limit is defined. From (A.3) and the second inequality of (A.4), the solution
coincides with the lower endpoint m⋆ = b1 when

µt − rt ≤ a+1 .

From (A.2) and the first inequality of (A.4), the solution coincides with the upper endpoint
m⋆ = bK when

µt − rt ≥ a−K .

33



A breakpoint m⋆ = bk of f() in its interior domain is a solution when

a−k ≤ µt − rt ≤ a+k .

So the solution to the investment problem is

m⋆
t =



b1 if µt − rt ≤ a+1 .(
µt−rt− ∂f(m⋆)

∂m

)
σ2
t

∂J(Xt,Yt,t)
∂Xt(

− ∂2J(Xt,Yt,t)

∂X2
t

)
Xt

−
∂2J(Xt,Yt,t)

∂Xt∂Yt
vt

∂2J(Xt,Yt,t)

∂X2
t

Xtσt

if a+k < µt − rt < a−k+1

bk if a−k ≤ µt − rt ≤ a+k
bK if µt − rt ≥ a−K

(A.5)

The consumption problem is

sup
ct

ε1u (ctXt)−
∂J(Xt, Yt, t)

∂Xt

Xtct

and second order conditions should be satisfied since the utility function is assumed to be
strictly concave. The solution c⋆t depends on the inverse marginal utility function (u′)−1()

c⋆t =(u′
t)

−1

(
ε−1
1

∂J(Xt, Yt, t)

∂Xt

)
X−1

t . (A.6)

Substituting the decision variables in the HJB with placeholders for the optimal consumption
rate c⋆t from (A.6) and the implicit optimal leverage ratio m⋆

t from (A.5) yields this partial
differential equation (PDE)

0 =ε1u (c
⋆
tXt) +

∂J(Xt, Yt, t)

∂t
− δJ(Xt, Yt, t)

+
∂J(Xt, Yt, t)

∂Xt

Xt (rt +m⋆
t (µt − rt)− f(m⋆

t )− c⋆t ) +
1

2

∂2J(Xt, Yt, t)

∂X2
t

X2
t m

⋆
t
2σ2

t

+
∂J(Xt, Yt, t)

∂Yt

zt +
1

2
tr

(
∂2J(Xt, Yt, t)

∂Y 2
t

(vtv
⊺
t + v̂tv̂

⊺
t )

)
+

∂2J(Xt, Yt, t)

∂Xt∂Yt

vtXtm
⋆
tσt

with boundary condition J(XT , YT , T ) = ε2uT (XT ).

A.5 Proof of portfolio optimization with constant market params,
Theorem 2

Assuming a CRRA utility function for u() and uT () as in (1) and constant market parameters
(rt := r, µt := µ, σt := σ), we continue from Section A.4. Both finite and infinite time horizon
problems can be solved with the following ansatz, where g(t) is an unspecified differentiable
function of time,

J(Xt, t) =g(t)γ
X1−γ

t

1− γ
. (A.7)
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Second order conditions for the investment and consumption problems can be easily verified.
The solutions to the investment and consumption problems are

m⋆ =



b1 if µ−r
γσ2 ≤ b1 +

1
γσ2

∂+f(m)
∂m

∣∣∣
m=b1

µ−r− ∂f(m⋆)
∂m

γσ2 if bk +
1

γσ2

∂+f(m)
∂m

∣∣∣
m=bk

< µ−r
γσ2 < bk+1 +

1
γσ2

∂−f(m)
∂m

∣∣∣
m=bk+1

bk if bk +
1

γσ2

∂−f(m)
∂m

∣∣∣
m=bk

≤ µ−r
γσ2 ≤ bk +

1
γσ2

∂+f(m)
∂m

∣∣∣
m=bk

bK if µ−r
γσ2 ≥ bK + 1

γσ2

∂−f(m)
∂m

∣∣∣
m=bK

c⋆t =ε
1
γ

1 g(t)
−1.

Notice that m⋆ is constant across time and state Xt.

The PDE reduces to an ordinary differential equation (ODE) for g(t)

0 = ε
1
γ

1 + g′(t)− g(t)A where A =
δ − (1− γ)

(
r +m⋆

t (µ− r)− f(m⋆
t )− 1

2
γm⋆

t
2σ2
)

γ
.

In the infinite horizon version, the problem depends on the state but not on time. So
g′(t) = 0, optimal consumption rate is

c⋆t = A since g(t) =
ε

1
γ

1

A
.

The impact of utility from terminal wealth and distant indirect utility fades away as long
as A > 0 since

lim
t→∞

E
[
ε2e

−δtu(Xt)
]
= lim

t→∞
ε2e

−AtX
1−γ
0

1− γ
= 0

and

lim
t→∞

E
[
e−δtJ(Xt, t)

]
= lim

t→∞
e−At ε1

Aγ

X1−γ
0

1− γ
= 0.

The condition A > 0 also guarantees that the consumption rate is nonnegative c⋆ ≥ 0 and
that indirect utility J() is bounded. It implies an impatience rate satisfying

δ >(1− γ)

(
r +m⋆

t (µ− r)− f(m⋆
t )−

1

2
γm⋆

t
2σ2

)
.

In the finite horizon version we use terminal utility at time T to derive the boundary
condition

g(T ) = ε
1
γ

2 from J(XT , T ) = g(T )γ
X1−γ

T

1− γ
= ε2

X1−γ
T

1− γ
,

and then solve the ODE for g(t) substituting the boundary g(T ) where necessary

g(t) =

ε
1
γ

1
1−e−A(T−t)

A
+ ε

1
γ

2 e
−A(T−t) if A ̸= 0

ε
1
γ

1 (T − t) + ε
1
γ

2 otherwise
.
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It is easy to verify that g(t) ≥ 0 for all A and thus c⋆ ≥ 0. Indirect utility J is bounded as
long as problem parameters and A are bounded as well.

The function g(t) can be generalized with respect to parameter A as h(A, t) defined in (15).
It is equivalent to the net present value with discount rate A of an annuity that pays ε1 from
time t to T and a final payoff ε2 at time T .

Regardless of the time horizon, m⋆
t and c⋆t are independent of wealth Xt and therefore

wealth dynamics (8) follow a geometric Brownian motion, meaning that wealth always remains
positive.

A.6 Discrete leverage error formulas

Here are the formulas used in Section 6.2 to evaluate the risk of discretely leveraged returns.

The moments of continuously leveraged return factors Rc come straight from the properties
of the lognormal distribution.

E[Rn
c ] =e

n

(
r+β(µ−r)+(n−1)β

2σ2

2

)
T

The moments of discretely leveraged return factors Rd are obtained in closed form as

E[Rn
d ] = E

[ ∏
t=∆t,...,T

(
max

(
0, (1− β)er∆t + βe

(
µ−σ2

2

)
∆t+σ

√
∆tZt

))n
]

=



∏
t=∆t,...,T

∫∞
log( (β−1)

β )
σ
√

∆t
+(σ

2
−µ−r

σ )
√
∆t

(∑n
k=0

(
n
k

)(
βe

(
µ−σ2

2

)
∆t+σ

√
∆tz

)k (
(1− β)er∆t

)n−k

)
ϕ(z) dz if β > 1

∏
t=∆t,...,T

∫ log( (β−1)
β )

σ
√

∆t
+(σ

2
−µ−r

σ )
√
∆t

−∞

(∑n
k=0

(
n
k

)(
βe

(
µ−σ2

2

)
∆t+σ

√
∆tz

)k (
(1− β)er∆t

)n−k

)
ϕ(z) dz if β < 0

∏
t=∆t,...,T E

[∑n
k=0

(
n
k

)(
βe

(
µ−σ2

2

)
∆t+σ

√
∆tZt

)k (
(1− β)er∆t

)n−k

]
otherwise

=



(∑n
k=0

(
n
k

)
(1− β)n−ke(n−k)r∆tβke

k
(
µ+(k−1)σ

2

2

)
∆t ∫∞

log( (β−1)
β )

σ
√
∆t

+(σ
2
−µ−r

σ )
√
∆t

e−
(z−kσ

√
∆t)2

2√
2π

dz

) T
∆t

if β > 1∑n
k=0

(
n
k

)
(1− β)n−ke(n−k)r∆tβke

k
(
µ+(k−1)σ

2

2

)
∆t ∫ log( (β−1)

β )
σ
√
∆t

+(σ
2
−µ−r

σ )
√
∆t

−∞
e−

(z−kσ
√

∆t)2

2√
2π

dz

 T
∆t

if β < 0

(∑n
k=0

(
n
k

)
(1− β)n−ke(n−k)r∆tβke

k
(
µ+(k−1)σ

2

2

)
∆t

) T
∆t

otherwise

=



(∑n
k=0

(
n
k

)
(1− β)n−ke(n−k)r∆tβke

k
(
µ+(k−1)σ

2

2

)
∆t
Φ

(
− log( (β−1)

β )
σ
√
∆t

−
(
σ
2
− µ−r

σ

)√
∆t+ kσ

√
∆t

)) T
∆t

if β > 1(∑n
k=0

(
n
k

)
(1− β)n−ke(n−k)r∆tβke

k
(
µ+(k−1)σ

2

2

)
∆t
Φ

(
log( (β−1)

β )
σ
√
∆t

+
(
σ
2
− µ−r

σ

)√
∆t− kσ

√
∆t

)) T
∆t

if β < 0(∑n
k=0

(
n
k

)
(1− β)n−ke(n−k)r∆tβke

k
(
µ+(k−1)σ

2

2

)
∆t

) T
∆t

otherwise

The moments of the discrete-continuous leverage ratio Rd/Rc are
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E

[(
Rd

Rc

)n]
= E

 ∏
t=∆t,...,T

max

(
0, (1− β)er∆t + βe

(
µ−σ2

2

)
∆t+σ

√
∆tZt

)
e

(
r+β(µ−r)−β2 σ2

2

)
∆t+βσ

√
∆tZt


n

=



∫∞
log( (β−1)

β )
σ
√

∆t
+(σ

2
−µ−r

σ )
√
∆t

∑n
k=0

(
n
k

)((1− β)e
−
(
β(µ−r)−β2 σ2

2

)
∆t−βσ

√
∆tz

)n−k

(
βe

−
(
(β−1)(µ−r)−(β2−1)σ

2

2

)
∆t+(1−β)σ

√
∆tz

)k

ϕ(z) dz


T
∆t

if β > 1

∫ log( (β−1)
β )

σ
√
∆t

+(σ
2
−µ−r

σ )
√
∆t

−∞

∑n
k=0

(
n
k

)((1− β)e
−
(
β(µ−r)−β2 σ2

2

)
∆t−βσ

√
∆tz

)n−k

(
βe

−
(
(β−1)(µ−r)−(β2−1)σ

2

2

)
∆t+(1−β)σ

√
∆tz

)k

ϕ(z) dz


T
∆t

if β < 0

(
E

[∑n
k=0

(
n
k

)(
(1− β)e

−
(
β(µ−r)−β2 σ2

2

)
∆t−βσ

√
∆tZt

)n−k (
βe

−
(
(β−1)(µ−r)−(β2−1)σ

2

2

)
∆t+(1−β)σ

√
∆tZt

)k
]) T

∆t

otherwise

=



(∑n
k=0

(
n
k

)
(1− β)n−kβke

−
(
(nβ−k)(µ−r)−(nβ2−k)σ

2

2

)
∆t
e

(k−nβ)2σ2∆t
2

∫∞
log( (β−1)

β )
σ
√
∆t

+(σ
2
−µ−r

σ )
√
∆t

e−
(z−(k−nβ)σ

√
∆t)2

2√
2π

dz

) T
∆t

if β > 1∑n
k=0

(
n
k

)
(1− β)n−kβke

−
(
(nβ−k)(µ−r)−(nβ2−k)σ

2

2

)
∆t
e

(k−nβ)2σ2∆t
2

∫ log( (β−1)
β )

σ
√

∆t
+(σ

2
−µ−r

σ )
√
∆t

−∞
e−

(z−(k−nβ)σ
√
∆t)2

2√
2π

dz

 T
∆t

if β < 0

(∑n
k=0

(
n
k

)
(1− β)n−kβke

−
(
(nβ−k)(µ−r)−(nβ2−k)σ

2

2

)
∆t
E
[
e(k−nβ)σ

√
∆tZt

]) T
∆t

otherwise

=



(∑n
k=0

(
n
k

)
(1− β)n−kβke

−
(
(nβ−k)(µ−r)−((k−nβ)2+nβ2−k)σ

2

2

)
∆t
Φ

(
− log( (β−1)

β )
σ
√
∆t

−
(
σ
2
− µ−r

σ

)√
∆t+ (k − nβ)σ

√
∆t

)) T
∆t

if β > 1(∑n
k=0

(
n
k

)
(1− β)n−kβke

−
(
(nβ−k)(µ−r)−((k−nβ)2+nβ2−k)σ

2

2

)
∆t
Φ

(
log( (β−1)

β )
σ
√
∆t

+
(
σ
2
− µ−r

σ

)√
∆t− (k − nβ)σ

√
∆t

)) T
∆t

if β < 0(∑n
k=0

(
n
k

)
(1− β)n−kβke

−
(
(nβ−k)(µ−r)−((k−nβ)2+nβ2−k)σ

2

2

)
∆t

) T
∆t

otherwise

Assuming a geometric Brownian motion, the cumulative distribution function FMd,T
of

the discretely leveraged return factor Rd ever falling below threshold x ≥ 0 at any time pe-
riod t ∈ {∆t, . . . , T} follows from the independence between return factors and lognormality.

FMd,T
(x) =



1− Φ

(
−

log

(
x+(β−1)er∆t

β

)
−
(
µ−σ2

2

)
∆t

σ
√
∆t

) T
∆t

if β > max(1− xe−r∆t, 0)

0 if β ∈ (0, 1− xe−r∆t]

1x≥er∆t if β = 0

1 if β ∈ [1− xe−r∆t, 0)

1− Φ

(
log

(
x+(β−1)er∆t

β

)
−
(
µ−σ2

2

)
∆t

σ
√
∆t

) T
∆t

if β < min(1− xe−r∆t, 0)

(A.8)

A.7 Proof of discrete-continuous leverage ratio bounds, Lemma 2

Let us express Rd/Rc using the discounted underlying return factor Ru = e

(
µ−r−σ2

2

)
∆t+σ

√
∆tZt

as

M =
Rd

Rc

=
max (0, 1 + β (Ru − 1))

Rβ
u

e(β
2−β)σ

2

2
∆t

The quasi-convexity properties and extrema of M = Rd/Rc as a continuous function of
Ru ∈ (0,∞) can be established from the first derivative.

M ′(Ru) =

− e(β
2−β)σ

2

2 ∆t

Rβ
u

β(β − 1)Ru−1
Ru

if 1 + β (Ru − 1) ≥ 0

0 otherwise
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For β ∈ {0, 1}, Rd/Rc is both weakly quasi-concave and quasi-convex since M ′(Ru) = 0
everywhere. For β /∈ [0, 1] and on the region not clipped by the max operator, the derivative
M ′(Ru)|Ru<1 > 0, M ′(Ru)|Ru=0 = 0 and M ′(Ru)|Ru>1 < 0, which makes M strictly quasi-
concave and Ru = 1 a global maximum. For β ∈ (0, 1) and on the region not clipped by the
max operator, the derivative M ′(Ru)|Ru<1 < 0, M ′(Ru)|Ru=0 = 0 and M ′(Ru)|Ru>1 > 0, which
makes M strictly quasi-convex and Ru = 1 a global minimum. Extending the domain to the
region clipped by the max operator, 1 + β (Ru − 1) < 0, which surrounds the core domain and
satisfies M ′(Ru) = 0, just weakens the quasi-concavity and quasi-convexity relationships. The
upper and lower bounds values are obtained evaluating M(Ru) at the global extremum Ru = 1.

The limits of Rd

Rc
at the extreme values of Ru can be easily verified after resolving the

maximum operator

lim
Ru↑∞

Rd

Rc

=


limRu↑∞

βRu

Rβ
u
e(β

2−β)σ
2

2
∆t = 0 if β > 1

limRu↑∞
0

Rβ
u
e(β

2−β)σ
2

2
∆t = 0 if β < 0

limRu↑∞
βRu

Rβ
u
e(β

2−β)σ
2

2
∆t = ∞ if β ∈ (0, 1)

1 otherwise

lim
Ru↓0

Rd

Rc

=


limRu↓0

0

Rβ
u
e(β

2−β)σ
2

2
∆t = 0 if β > 1

limRu↓0
1−β

Rβ
u
e(β

2−β)σ
2

2
∆t = 0 if β < 0

limRu↓0
1−β

Rβ
u
e(β

2−β)σ
2

2
∆t = ∞ if β ∈ (0, 1)

1 otherwise

References

Andersen, T. G., Davis, R. A., Kreiß, J.-P., and Mikosch, T. V. (2009, April 21). Handbook of
Financial Time Series. Springer Science & Business Media.

Andrew, A. M. (1979). Another efficient algorithm for convex hulls in two dimensions. Infor-
mation Processing Letters, 9 (5), 216–219.

Avellaneda, M., and Zhang, S. (2010). Path-dependence of leveraged ETF returns. SIAM Jour-
nal on Financial Mathematics, 1 (1), 586–603.

Bansal, V. K., and Marshall, J. F. (2015). A tracking error approach to leveraged ETFs: Are
they really that bad? Global Finance Journal, 26, 47–63.

Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. The Journal of Busi-
ness, 45 (3), 444–455.

Brennan, M. J., and Xia, Y. (2002). Dynamic Asset Allocation under Inflation. The Journal of
Finance, 57 (3), 1201–1238.

Campbell, J. Y. (2006). Household Finance. The Journal of Finance, 61 (4), 1553–1604.
Cuoco, D., and Liu, H. (2000). A Martingale Characterization of Consumption Choices and

Hedging Costs with Margin Requirements. Mathematical Finance, 10 (3), 355–385.
Dai, M., Kou, S., Soner, H. M., and Yang, C. (2023). Leveraged Exchange-Traded Funds with

Market Closure and Frictions. Management Science, 69 (4), 2517–2535.
De Haan, L., and Ferreira, A. (2006). Extreme Value Theory.
Giese, G. (2010). On the risk-return profile of leveraged and inverse ETFs. Journal of Asset

Management, 11 (4), 219–228.
Grossman, S. J., and Vila, J.-L. (1992). Optimal Dynamic Trading with Leverage Constraints.

The Journal of Financial and Quantitative Analysis, 27 (2), 151–168.

38



Guasoni, P., and Mayerhofer, E. (2023). Leveraged funds: robust replication and performance
evaluation. Quantitative Finance, 23 (7), 1155–1176.

Guo, K., and Leung, T. (2014). Commodity Leveraged Etfs: Tracking Errors, Volatility Decay
and Trading Stategies. The Journal of Risk, 8–13.

Haliassos, M., and Bertaut, C. C. (1995). Why do so Few Hold Stocks? The Economic Journal,
105 (432), 1110–1129.

Henderson, V. (2005). Explicit solutions to an optimal portfolio choice problem with stochastic
income. Journal of Economic Dynamics and Control, 29 (7), 1237–1266.

Hou, K., Xue, C., and Zhang, L. (2020). Replicating Anomalies. The Review of Financial
Studies, 33 (5), 2019–2133.

Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983). Extremes and Related Properties of
Random Sequences and Processes.

Leung, T., and Park, H. (2017). Long-term growth rate of expected utility for leveraged ETFs:
Martingale extraction approach. International Journal of Theoretical and Applied Fi-
nance, 20 (6), 1750037.

Leung, T., and Santoli, M. (2012). Leveraged exchange-traded funds: admissible leverage and
risk horizon. Journal of Investment Strategies.

Levy, M., and Roll, R. (2010). The Market Portfolio May Be Mean/Variance Efficient After
All: The Market Portfolio. The Review of Financial Studies, 23 (6), 2464–2491.

Lintner, J. (1965). Security Prices, Risk, and Maximal Gains From Diversification. The Journal
of Finance, 20 (4), 587–615.

Loviscek, A., Tang, H., and Xu, X. E. (2014). Do leveraged exchange-traded products deliver
their stated multiples? Journal of Banking & Finance, 43, 29–47.
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